首页 > 数学 > 相互独立事件概念

相互独立事件概念

时间:2024-03-05 来源:养娃家

  相互独立是设A,B是两事件,如果满足等式P(AB)=P(A)P(B),则称事件A,B相互独立。设A,B是试验E的两个事件,若P(A)>0,可以定义P(B∣A)。一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B)。

数学 (2).jpg

  相互独立事件定义

  定义:相互独立是设A,B是两事件,如果满足等式P(A*B)=P(A)*P(B),则称事件A,B相互独立,简称A,B独立。

  设A,B是试验E的两个事件,若P(A)u003e0,可以定义P(B∣A)。一般A的发生对B发生的概率是有影响的,所以条件概率P(B∣A)≠P(B),而只有当A的发生对B发生的概率没有影响的时候(即A与B相互独立)才有条件概率P(B∣A)=P(B)。这时,由乘法定理P(A∩B)=P(B∣A)P(A)=P(A)P(B)。

  例题

cb4fc805f896ed34f95a986d756016c.png


猜你喜欢

友情链接

终端库 高起点 艺考网 育路教育网 招生信息网 考研网 阅读力 工作心得 艺考知识 在职研究生 帮考网 留学知识 职业教育 汉语拼音 天气新闻 天奇生活 高考学习 在线学习 紫微黄历网 时间校准 雅思英语 托福学习 出国留学 考研辅导 学历提升 星座网