对数的性质与运算性质
时间:2024-02-29 来源:养娃家
在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。
对数的性质
1、a^(log(a)(b))=b
2、log(a)(a^b)=b
3、log(a)(MN)=log(a)(M)+log(a)(N);
4、log(a)(M÷N)=log(a)(M)-log(a)(N);
5、log(a)(M^n)=nlog(a)(M)
6、log(a^n)M=1/nlog(a)(M)
7、换底公式:log(a)(N)=log(b)(N)÷log(b)(a)
8、log(a)(b)=1/log(b)(a)
对数的运算性质有哪些
1.两个正数的积的对数,等于同一底数的这两个数的对数的和
2.两个正数商的对数,等于同一底数的被除数的对数减去除数对数的差
3.一个正数幂的对数,等于幂的底数的对数乘以幂的指数
4.若式中幂指数则有以下的正数的算术根的对数运算法则:一个正数的算术根的对数,等于被开方数的对数除以根指数
在数学中,对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。在简单的情况下,乘数中的对数计数因子。
更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。