首页 > 数学 > 1质数和合数

1质数和合数

时间:2023-07-06 来源:养娃家

  1既不是质数,也不是合数。质数定义为一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数。合数指在大于1的自然数里,除了1与这个数本身之外,还可以被其他自然数整除的数。由质数和合数的定义可知,1既不是质数也不是合数。

数学5.jpg

  质数介绍

  质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。

  质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn。如果N×1为素数,则N×1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

  合数性质

  1、所有大于2的偶数都是合数。

  2、所有大于5的奇数中,个位为5的都是合数。

  3、除0以外,所有个位为0的自然数都是合数。

  4、所有个位为4,6,8的自然数都是合数。

  5、最小的(偶)合数为4,最小的奇合数为9。

  6、每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)

  7、对任一大于5的合数(威尔逊定理)

  条件的正整数:

  (1)、是两个大于1的整数之乘积;

  (2)、拥有至少三个因数(因子);

  (3)、有至少一个素因子的非素数。

  (4)、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。

  注:“0”“1”既不是质数也不是合数。

  记忆口诀

  方法一:儿歌记忆法(一)

  (二、三、五、七和十一)(十三后面是十七)(十九、二三、二十九)(三一、三七、四十一)(四三、四七、五十三)(五九、六一、六十七)(七一、七三、七十九)(八三、八九、九十七)

  方法二:儿歌记忆法(二)

  (二、三、五、七和十一)(十三后面是十七)(还有十九别忘记)(二三,二九,三十一)(三七,四一,四十三)(四七,五三,五十九)(六一,六七,七十一)(七三,七九)(八三,八九)(九十七)

  方法三:口诀记忆法

  二,三,五,七,一十一;一三,一九,一十七;二三,二九,三十七;三一,四一,四十七;四三,五三,五十九;六一,七一,六十七;七三,八三,八十九;再加七九,九十七;25个质数不能少;百内质数心中记。

猜你喜欢

友情链接

终端库 高起点 艺考网 育路教育网 招生信息网 考研网 阅读力 工作心得 艺考知识 在职研究生 帮考网 留学知识 职业教育 汉语拼音 天气新闻 天奇生活 高考学习 在线学习 紫微黄历网 时间校准 雅思英语 托福学习 出国留学 考研辅导 学历提升 星座网